Metamath Proof Explorer


Theorem eqsstrid

Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004)

Ref Expression
Hypotheses eqsstrid.1 A = B
eqsstrid.2 φ B C
Assertion eqsstrid φ A C

Proof

Step Hyp Ref Expression
1 eqsstrid.1 A = B
2 eqsstrid.2 φ B C
3 1 sseq1i A C B C
4 2 3 sylibr φ A C