Metamath Proof Explorer


Theorem eqsstrid

Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004)

Ref Expression
Hypotheses eqsstrid.1 A=B
eqsstrid.2 φBC
Assertion eqsstrid φAC

Proof

Step Hyp Ref Expression
1 eqsstrid.1 A=B
2 eqsstrid.2 φBC
3 1 sseq1i ACBC
4 2 3 sylibr φAC