Metamath Proof Explorer


Theorem eqsstrrid

Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004)

Ref Expression
Hypotheses eqsstrrid.1
|- B = A
eqsstrrid.2
|- ( ph -> B C_ C )
Assertion eqsstrrid
|- ( ph -> A C_ C )

Proof

Step Hyp Ref Expression
1 eqsstrrid.1
 |-  B = A
2 eqsstrrid.2
 |-  ( ph -> B C_ C )
3 1 eqcomi
 |-  A = B
4 3 2 eqsstrid
 |-  ( ph -> A C_ C )