Metamath Proof Explorer


Theorem fvelrnb

Description: A member of a function's range is a value of the function. (Contributed by NM, 31-Oct-1995)

Ref Expression
Assertion fvelrnb FFnABranFxAFx=B

Proof

Step Hyp Ref Expression
1 fnrnfv FFnAranF=y|xAy=Fx
2 1 eleq2d FFnABranFBy|xAy=Fx
3 fvex FxV
4 eleq1 Fx=BFxVBV
5 3 4 mpbii Fx=BBV
6 5 rexlimivw xAFx=BBV
7 eqeq1 y=By=FxB=Fx
8 eqcom B=FxFx=B
9 7 8 bitrdi y=By=FxFx=B
10 9 rexbidv y=BxAy=FxxAFx=B
11 6 10 elab3 By|xAy=FxxAFx=B
12 2 11 bitrdi FFnABranFxAFx=B