Metamath Proof Explorer


Theorem cardsucnn

Description: The cardinality of the successor of a finite ordinal (natural number). This theorem does not hold for infinite ordinals; see cardsucinf . (Contributed by NM, 7-Nov-2008)

Ref Expression
Assertion cardsucnn AωcardsucA=succardA

Proof

Step Hyp Ref Expression
1 peano2 AωsucAω
2 cardnn sucAωcardsucA=sucA
3 1 2 syl AωcardsucA=sucA
4 cardnn AωcardA=A
5 suceq cardA=AsuccardA=sucA
6 4 5 syl AωsuccardA=sucA
7 3 6 eqtr4d AωcardsucA=succardA