Metamath Proof Explorer


Theorem catcbascl

Description: An element of the base set of the category of categories for a weak universe belongs to the weak universe. Formerly part of the proof for catcoppccl . (Contributed by AV, 14-Oct-2024)

Ref Expression
Hypotheses catcbascl.c C=CatCatU
catcbascl.b B=BaseC
catcbascl.u φUWUni
catcbascl.x φXB
Assertion catcbascl φXU

Proof

Step Hyp Ref Expression
1 catcbascl.c C=CatCatU
2 catcbascl.b B=BaseC
3 catcbascl.u φUWUni
4 catcbascl.x φXB
5 1 2 3 catcbas φB=UCat
6 4 5 eleqtrd φXUCat
7 6 elin1d φXU