Metamath Proof Explorer


Theorem cbvaliw

Description: Change bound variable. Uses only Tarski's FOL axiom schemes. Part of Lemma 7 of KalishMontague p. 86. (Contributed by NM, 19-Apr-2017)

Ref Expression
Hypotheses cbvaliw.1 xφyxφ
cbvaliw.2 ¬ψx¬ψ
cbvaliw.3 x=yφψ
Assertion cbvaliw xφyψ

Proof

Step Hyp Ref Expression
1 cbvaliw.1 xφyxφ
2 cbvaliw.2 ¬ψx¬ψ
3 cbvaliw.3 x=yφψ
4 2 3 spimw xφψ
5 1 4 alrimih xφyψ