Metamath Proof Explorer
		
		
		
		Description:  Change bound variable.  Uses only Tarski's FOL axiom schemes.  Part of
       Lemma 7 of KalishMontague p. 86.  (Contributed by NM, 19-Apr-2017)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | cbvaliw.1 | ⊢ ( ∀ 𝑥 𝜑  →  ∀ 𝑦 ∀ 𝑥 𝜑 ) | 
					
						|  |  | cbvaliw.2 | ⊢ ( ¬  𝜓  →  ∀ 𝑥 ¬  𝜓 ) | 
					
						|  |  | cbvaliw.3 | ⊢ ( 𝑥  =  𝑦  →  ( 𝜑  →  𝜓 ) ) | 
				
					|  | Assertion | cbvaliw | ⊢  ( ∀ 𝑥 𝜑  →  ∀ 𝑦 𝜓 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cbvaliw.1 | ⊢ ( ∀ 𝑥 𝜑  →  ∀ 𝑦 ∀ 𝑥 𝜑 ) | 
						
							| 2 |  | cbvaliw.2 | ⊢ ( ¬  𝜓  →  ∀ 𝑥 ¬  𝜓 ) | 
						
							| 3 |  | cbvaliw.3 | ⊢ ( 𝑥  =  𝑦  →  ( 𝜑  →  𝜓 ) ) | 
						
							| 4 | 2 3 | spimw | ⊢ ( ∀ 𝑥 𝜑  →  𝜓 ) | 
						
							| 5 | 1 4 | alrimih | ⊢ ( ∀ 𝑥 𝜑  →  ∀ 𝑦 𝜓 ) |