Metamath Proof Explorer


Theorem cbvdisjv

Description: Change bound variables in a disjoint collection. (Contributed by Mario Carneiro, 11-Dec-2016)

Ref Expression
Hypothesis cbvdisjv.1 x=yB=C
Assertion cbvdisjv DisjxABDisjyAC

Proof

Step Hyp Ref Expression
1 cbvdisjv.1 x=yB=C
2 nfcv _yB
3 nfcv _xC
4 2 3 1 cbvdisj DisjxABDisjyAC