Metamath Proof Explorer


Theorem cbvexdvaw

Description: Rule used to change the bound variable in an existential quantifier with implicit substitution. Deduction form. Version of cbvexdva with a disjoint variable condition, requiring fewer axioms. (Contributed by David Moews, 1-May-2017) Avoid ax-13 . (Revised by Gino Giotto, 10-Jan-2024) Reduce axiom usage. (Revised by Wolf Lammen, 10-Feb-2024)

Ref Expression
Hypothesis cbvaldvaw.1 φx=yψχ
Assertion cbvexdvaw φxψyχ

Proof

Step Hyp Ref Expression
1 cbvaldvaw.1 φx=yψχ
2 1 notbid φx=y¬ψ¬χ
3 2 cbvaldvaw φx¬ψy¬χ
4 alnex x¬ψ¬xψ
5 alnex y¬χ¬yχ
6 3 4 5 3bitr3g φ¬xψ¬yχ
7 6 con4bid φxψyχ