Metamath Proof Explorer


Theorem cbvexdw

Description: Deduction used to change bound variables, using implicit substitution. Version of cbvexd with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 2-Jan-2002) Avoid ax-13 . (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypotheses cbvaldw.1 yφ
cbvaldw.2 φyψ
cbvaldw.3 φx=yψχ
Assertion cbvexdw φxψyχ

Proof

Step Hyp Ref Expression
1 cbvaldw.1 yφ
2 cbvaldw.2 φyψ
3 cbvaldw.3 φx=yψχ
4 2 nfnd φy¬ψ
5 notbi ψχ¬ψ¬χ
6 3 5 imbitrdi φx=y¬ψ¬χ
7 1 4 6 cbvaldw φx¬ψy¬χ
8 alnex x¬ψ¬xψ
9 alnex y¬χ¬yχ
10 7 8 9 3bitr3g φ¬xψ¬yχ
11 10 con4bid φxψyχ