Metamath Proof Explorer


Theorem cbviing

Description: Change bound variables in an indexed intersection. Usage of this theorem is discouraged because it depends on ax-13 . See cbviin for a version with more disjoint variable conditions, but not requiring ax-13 . (Contributed by Jeff Hankins, 26-Aug-2009) (Revised by Mario Carneiro, 14-Oct-2016) (New usage is discouraged.)

Ref Expression
Hypotheses cbviung.1 _yB
cbviung.2 _xC
cbviung.3 x=yB=C
Assertion cbviing xAB=yAC

Proof

Step Hyp Ref Expression
1 cbviung.1 _yB
2 cbviung.2 _xC
3 cbviung.3 x=yB=C
4 1 nfcri yzB
5 2 nfcri xzC
6 3 eleq2d x=yzBzC
7 4 5 6 cbvral xAzByAzC
8 7 abbii z|xAzB=z|yAzC
9 df-iin xAB=z|xAzB
10 df-iin yAC=z|yAzC
11 8 9 10 3eqtr4i xAB=yAC