Metamath Proof Explorer


Theorem cbviin

Description: Change bound variables in an indexed intersection. (Contributed by Jeff Hankins, 26-Aug-2009) (Revised by Mario Carneiro, 14-Oct-2016) Add disjoint variable condition to avoid ax-13 . See cbviing for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024)

Ref Expression
Hypotheses cbviun.1 _yB
cbviun.2 _xC
cbviun.3 x=yB=C
Assertion cbviin xAB=yAC

Proof

Step Hyp Ref Expression
1 cbviun.1 _yB
2 cbviun.2 _xC
3 cbviun.3 x=yB=C
4 1 nfcri yzB
5 2 nfcri xzC
6 3 eleq2d x=yzBzC
7 4 5 6 cbvralw xAzByAzC
8 7 abbii z|xAzB=z|yAzC
9 df-iin xAB=z|xAzB
10 df-iin yAC=z|yAzC
11 8 9 10 3eqtr4i xAB=yAC