Metamath Proof Explorer


Theorem cbvralw

Description: Rule used to change bound variables, using implicit substitution. Version of cbvralfw with more disjoint variable conditions. (Contributed by NM, 31-Jul-2003) Avoid ax-13 . (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypotheses cbvralw.1 yφ
cbvralw.2 xψ
cbvralw.3 x=yφψ
Assertion cbvralw xAφyAψ

Proof

Step Hyp Ref Expression
1 cbvralw.1 yφ
2 cbvralw.2 xψ
3 cbvralw.3 x=yφψ
4 nfcv _xA
5 nfcv _yA
6 4 5 1 2 3 cbvralfw xAφyAψ