Metamath Proof Explorer


Theorem cbvralfw

Description: Rule used to change bound variables, using implicit substitution. Version of cbvralf with a disjoint variable condition, which does not require ax-10 , ax-13 . (Contributed by NM, 7-Mar-2004) (Revised by Gino Giotto, 23-May-2024)

Ref Expression
Hypotheses cbvralfw.1 _ x A
cbvralfw.2 _ y A
cbvralfw.3 y φ
cbvralfw.4 x ψ
cbvralfw.5 x = y φ ψ
Assertion cbvralfw x A φ y A ψ

Proof

Step Hyp Ref Expression
1 cbvralfw.1 _ x A
2 cbvralfw.2 _ y A
3 cbvralfw.3 y φ
4 cbvralfw.4 x ψ
5 cbvralfw.5 x = y φ ψ
6 2 nfcri y x A
7 6 3 nfim y x A φ
8 1 nfcri x y A
9 8 4 nfim x y A ψ
10 eleq1w x = y x A y A
11 10 5 imbi12d x = y x A φ y A ψ
12 7 9 11 cbvalv1 x x A φ y y A ψ
13 df-ral x A φ x x A φ
14 df-ral y A ψ y y A ψ
15 12 13 14 3bitr4i x A φ y A ψ