Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
cbvralfw
Metamath Proof Explorer
Description: Rule used to change bound variables, using implicit substitution.
Version of cbvralf with a disjoint variable condition, which does not
require ax-10 , ax-13 . (Contributed by NM , 7-Mar-2004) (Revised by Gino Giotto , 23-May-2024)
Ref
Expression
Hypotheses
cbvralfw.1
⊢ Ⅎ _ x A
cbvralfw.2
⊢ Ⅎ _ y A
cbvralfw.3
⊢ Ⅎ y φ
cbvralfw.4
⊢ Ⅎ x ψ
cbvralfw.5
⊢ x = y → φ ↔ ψ
Assertion
cbvralfw
⊢ ∀ x ∈ A φ ↔ ∀ y ∈ A ψ
Proof
Step
Hyp
Ref
Expression
1
cbvralfw.1
⊢ Ⅎ _ x A
2
cbvralfw.2
⊢ Ⅎ _ y A
3
cbvralfw.3
⊢ Ⅎ y φ
4
cbvralfw.4
⊢ Ⅎ x ψ
5
cbvralfw.5
⊢ x = y → φ ↔ ψ
6
2
nfcri
⊢ Ⅎ y x ∈ A
7
6 3
nfim
⊢ Ⅎ y x ∈ A → φ
8
1
nfcri
⊢ Ⅎ x y ∈ A
9
8 4
nfim
⊢ Ⅎ x y ∈ A → ψ
10
eleq1w
⊢ x = y → x ∈ A ↔ y ∈ A
11
10 5
imbi12d
⊢ x = y → x ∈ A → φ ↔ y ∈ A → ψ
12
7 9 11
cbvalv1
⊢ ∀ x x ∈ A → φ ↔ ∀ y y ∈ A → ψ
13
df-ral
⊢ ∀ x ∈ A φ ↔ ∀ x x ∈ A → φ
14
df-ral
⊢ ∀ y ∈ A ψ ↔ ∀ y y ∈ A → ψ
15
12 13 14
3bitr4i
⊢ ∀ x ∈ A φ ↔ ∀ y ∈ A ψ