Metamath Proof Explorer


Theorem cbvralfw

Description: Rule used to change bound variables, using implicit substitution. Version of cbvralf with a disjoint variable condition, which does not require ax-10 , ax-13 . For a version not dependent on ax-11 and ax-12, see cbvralvw . (Contributed by NM, 7-Mar-2004) Avoid ax-10 , ax-13 . (Revised by Gino Giotto, 23-May-2024)

Ref Expression
Hypotheses cbvralfw.1 _xA
cbvralfw.2 _yA
cbvralfw.3 yφ
cbvralfw.4 xψ
cbvralfw.5 x=yφψ
Assertion cbvralfw xAφyAψ

Proof

Step Hyp Ref Expression
1 cbvralfw.1 _xA
2 cbvralfw.2 _yA
3 cbvralfw.3 yφ
4 cbvralfw.4 xψ
5 cbvralfw.5 x=yφψ
6 2 nfcri yxA
7 6 3 nfim yxAφ
8 1 nfcri xyA
9 8 4 nfim xyAψ
10 eleq1w x=yxAyA
11 10 5 imbi12d x=yxAφyAψ
12 7 9 11 cbvalv1 xxAφyyAψ
13 df-ral xAφxxAφ
14 df-ral yAψyyAψ
15 12 13 14 3bitr4i xAφyAψ