Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - start with the Axiom of Extensionality Restricted quantification Restricted universal and existential quantification cbvralfw  
				
		 
		
			
		 
		Description:   Rule used to change bound variables, using implicit substitution.
       Version of cbvralf  with a disjoint variable condition, which does not
       require ax-10  , ax-13  .  For a version not dependent on ax-11  and
       ax-12, see cbvralvw  .  (Contributed by NM , 7-Mar-2004)   Avoid
       ax-10  , ax-13  .  (Revised by GG , 23-May-2024) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						cbvralfw.1   ⊢    Ⅎ   _  x  A       
					 
					
						cbvralfw.2   ⊢    Ⅎ   _  y  A       
					 
					
						cbvralfw.3   ⊢   Ⅎ  y   φ        
					 
					
						cbvralfw.4   ⊢   Ⅎ  x   ψ        
					 
					
						cbvralfw.5    ⊢   x  =  y    →    φ   ↔   ψ         
					 
				
					Assertion 
					cbvralfw    ⊢   ∀  x  ∈  A   φ     ↔   ∀  y  ∈  A   ψ          
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							cbvralfw.1  ⊢    Ⅎ   _  x  A       
						
							2 
								
							 
							cbvralfw.2  ⊢    Ⅎ   _  y  A       
						
							3 
								
							 
							cbvralfw.3  ⊢   Ⅎ  y   φ        
						
							4 
								
							 
							cbvralfw.4  ⊢   Ⅎ  x   ψ        
						
							5 
								
							 
							cbvralfw.5   ⊢   x  =  y    →    φ   ↔   ψ         
						
							6 
								2 
							 
							nfcri  ⊢   Ⅎ  y   x  ∈  A         
						
							7 
								6  3 
							 
							nfim  ⊢   Ⅎ  y    x  ∈  A    →   φ         
						
							8 
								1 
							 
							nfcri  ⊢   Ⅎ  x   y  ∈  A         
						
							9 
								8  4 
							 
							nfim  ⊢   Ⅎ  x    y  ∈  A    →   ψ         
						
							10 
								
							 
							eleq1w   ⊢   x  =  y    →    x  ∈  A    ↔   y  ∈  A          
						
							11 
								10  5 
							 
							imbi12d   ⊢   x  =  y    →     x  ∈  A    →   φ    ↔    y  ∈  A    →   ψ          
						
							12 
								7  9  11 
							 
							cbvalv1   ⊢   ∀  x    x  ∈  A    →   φ      ↔   ∀  y    y  ∈  A    →   ψ           
						
							13 
								
							 
							df-ral   ⊢   ∀  x  ∈  A   φ     ↔   ∀  x    x  ∈  A    →   φ           
						
							14 
								
							 
							df-ral   ⊢   ∀  y  ∈  A   ψ     ↔   ∀  y    y  ∈  A    →   ψ           
						
							15 
								12  13  14 
							 
							3bitr4i   ⊢   ∀  x  ∈  A   φ     ↔   ∀  y  ∈  A   ψ