Metamath Proof Explorer


Theorem cbvrexfw

Description: Rule used to change bound variables, using implicit substitution. Version of cbvrexf with a disjoint variable condition, which does not require ax-13 . For a version not dependent on ax-11 and ax-12, see cbvrexvw . (Contributed by FL, 27-Apr-2008) Avoid ax-10 , ax-13 . (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypotheses cbvrexfw.1 _xA
cbvrexfw.2 _yA
cbvrexfw.3 yφ
cbvrexfw.4 xψ
cbvrexfw.5 x=yφψ
Assertion cbvrexfw xAφyAψ

Proof

Step Hyp Ref Expression
1 cbvrexfw.1 _xA
2 cbvrexfw.2 _yA
3 cbvrexfw.3 yφ
4 cbvrexfw.4 xψ
5 cbvrexfw.5 x=yφψ
6 3 nfn y¬φ
7 4 nfn x¬ψ
8 5 notbid x=y¬φ¬ψ
9 1 2 6 7 8 cbvralfw xA¬φyA¬ψ
10 ralnex xA¬φ¬xAφ
11 ralnex yA¬ψ¬yAψ
12 9 10 11 3bitr3i ¬xAφ¬yAψ
13 12 con4bii xAφyAψ