Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
cbvrexfw
Metamath Proof Explorer
Description: Rule used to change bound variables, using implicit substitution.
Version of cbvrexf with a disjoint variable condition, which does not
require ax-13 . (Contributed by FL , 27-Apr-2008) (Revised by Gino
Giotto , 10-Jan-2024)
Ref
Expression
Hypotheses
cbvrexfw.1
⊢ Ⅎ 𝑥 𝐴
cbvrexfw.2
⊢ Ⅎ 𝑦 𝐴
cbvrexfw.3
⊢ Ⅎ 𝑦 𝜑
cbvrexfw.4
⊢ Ⅎ 𝑥 𝜓
cbvrexfw.5
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) )
Assertion
cbvrexfw
⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑦 ∈ 𝐴 𝜓 )
Proof
Step
Hyp
Ref
Expression
1
cbvrexfw.1
⊢ Ⅎ 𝑥 𝐴
2
cbvrexfw.2
⊢ Ⅎ 𝑦 𝐴
3
cbvrexfw.3
⊢ Ⅎ 𝑦 𝜑
4
cbvrexfw.4
⊢ Ⅎ 𝑥 𝜓
5
cbvrexfw.5
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) )
6
3
nfn
⊢ Ⅎ 𝑦 ¬ 𝜑
7
4
nfn
⊢ Ⅎ 𝑥 ¬ 𝜓
8
5
notbid
⊢ ( 𝑥 = 𝑦 → ( ¬ 𝜑 ↔ ¬ 𝜓 ) )
9
1 2 6 7 8
cbvralfw
⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀ 𝑦 ∈ 𝐴 ¬ 𝜓 )
10
9
notbii
⊢ ( ¬ ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∀ 𝑦 ∈ 𝐴 ¬ 𝜓 )
11
dfrex2
⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 )
12
dfrex2
⊢ ( ∃ 𝑦 ∈ 𝐴 𝜓 ↔ ¬ ∀ 𝑦 ∈ 𝐴 ¬ 𝜓 )
13
10 11 12
3bitr4i
⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑦 ∈ 𝐴 𝜓 )