Metamath Proof Explorer


Theorem cbvrexfw

Description: Rule used to change bound variables, using implicit substitution. Version of cbvrexf with a disjoint variable condition, which does not require ax-13 . (Contributed by FL, 27-Apr-2008) (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypotheses cbvrexfw.1
|- F/_ x A
cbvrexfw.2
|- F/_ y A
cbvrexfw.3
|- F/ y ph
cbvrexfw.4
|- F/ x ps
cbvrexfw.5
|- ( x = y -> ( ph <-> ps ) )
Assertion cbvrexfw
|- ( E. x e. A ph <-> E. y e. A ps )

Proof

Step Hyp Ref Expression
1 cbvrexfw.1
 |-  F/_ x A
2 cbvrexfw.2
 |-  F/_ y A
3 cbvrexfw.3
 |-  F/ y ph
4 cbvrexfw.4
 |-  F/ x ps
5 cbvrexfw.5
 |-  ( x = y -> ( ph <-> ps ) )
6 3 nfn
 |-  F/ y -. ph
7 4 nfn
 |-  F/ x -. ps
8 5 notbid
 |-  ( x = y -> ( -. ph <-> -. ps ) )
9 1 2 6 7 8 cbvralfw
 |-  ( A. x e. A -. ph <-> A. y e. A -. ps )
10 9 notbii
 |-  ( -. A. x e. A -. ph <-> -. A. y e. A -. ps )
11 dfrex2
 |-  ( E. x e. A ph <-> -. A. x e. A -. ph )
12 dfrex2
 |-  ( E. y e. A ps <-> -. A. y e. A -. ps )
13 10 11 12 3bitr4i
 |-  ( E. x e. A ph <-> E. y e. A ps )