Database  
				ZF (ZERMELO-FRAENKEL) SET THEORY  
				ZF Set Theory - start with the Axiom of Extensionality  
				Restricted quantification  
				Restricted universal and existential quantification  
				cbvrexfw  
			 
				
		 
		 Metamath Proof Explorer 
		
			
		 
		 
		
		Description:   Rule used to change bound variables, using implicit substitution.
       Version of cbvrexf  with a disjoint variable condition, which does not
       require ax-13  .  For a version not dependent on ax-11  and ax-12, see
       cbvrexvw  .  (Contributed by FL , 27-Apr-2008)   Avoid ax-10  ,
       ax-13  .  (Revised by GG , 10-Jan-2024) 
		
			
				
					 
					 
					Ref 
					Expression 
				 
					
						 
						Hypotheses 
						cbvrexfw.1  
						|- F/_ x A  
					 
					
						 
						 
						cbvrexfw.2  
						|- F/_ y A  
					 
					
						 
						 
						cbvrexfw.3  
						|- F/ y ph  
					 
					
						 
						 
						cbvrexfw.4  
						|- F/ x ps  
					 
					
						 
						 
						cbvrexfw.5  
						|- ( x = y -> ( ph <-> ps ) )  
					 
				
					 
					Assertion 
					cbvrexfw  
					|- ( E. x e. A ph <-> E. y e. A ps )  
				 
			
		 
		 
			
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1  
							
								
							 
							cbvrexfw.1  
							 |-  F/_ x A  
						 
						
							2  
							
								
							 
							cbvrexfw.2  
							 |-  F/_ y A  
						 
						
							3  
							
								
							 
							cbvrexfw.3  
							 |-  F/ y ph  
						 
						
							4  
							
								
							 
							cbvrexfw.4  
							 |-  F/ x ps  
						 
						
							5  
							
								
							 
							cbvrexfw.5  
							 |-  ( x = y -> ( ph <-> ps ) )  
						 
						
							6  
							
								3 
							 
							nfn  
							 |-  F/ y -. ph  
						 
						
							7  
							
								4 
							 
							nfn  
							 |-  F/ x -. ps  
						 
						
							8  
							
								5 
							 
							notbid  
							 |-  ( x = y -> ( -. ph <-> -. ps ) )  
						 
						
							9  
							
								1  2  6  7  8 
							 
							cbvralfw  
							 |-  ( A. x e. A -. ph <-> A. y e. A -. ps )  
						 
						
							10  
							
								
							 
							ralnex  
							 |-  ( A. x e. A -. ph <-> -. E. x e. A ph )  
						 
						
							11  
							
								
							 
							ralnex  
							 |-  ( A. y e. A -. ps <-> -. E. y e. A ps )  
						 
						
							12  
							
								9  10  11 
							 
							3bitr3i  
							 |-  ( -. E. x e. A ph <-> -. E. y e. A ps )  
						 
						
							13  
							
								12 
							 
							con4bii  
							 |-  ( E. x e. A ph <-> E. y e. A ps )