Metamath Proof Explorer


Theorem cbvralfw

Description: Rule used to change bound variables, using implicit substitution. Version of cbvralf with a disjoint variable condition, which does not require ax-10 , ax-13 . (Contributed by NM, 7-Mar-2004) (Revised by Gino Giotto, 23-May-2024)

Ref Expression
Hypotheses cbvralfw.1
|- F/_ x A
cbvralfw.2
|- F/_ y A
cbvralfw.3
|- F/ y ph
cbvralfw.4
|- F/ x ps
cbvralfw.5
|- ( x = y -> ( ph <-> ps ) )
Assertion cbvralfw
|- ( A. x e. A ph <-> A. y e. A ps )

Proof

Step Hyp Ref Expression
1 cbvralfw.1
 |-  F/_ x A
2 cbvralfw.2
 |-  F/_ y A
3 cbvralfw.3
 |-  F/ y ph
4 cbvralfw.4
 |-  F/ x ps
5 cbvralfw.5
 |-  ( x = y -> ( ph <-> ps ) )
6 2 nfcri
 |-  F/ y x e. A
7 6 3 nfim
 |-  F/ y ( x e. A -> ph )
8 1 nfcri
 |-  F/ x y e. A
9 8 4 nfim
 |-  F/ x ( y e. A -> ps )
10 eleq1w
 |-  ( x = y -> ( x e. A <-> y e. A ) )
11 10 5 imbi12d
 |-  ( x = y -> ( ( x e. A -> ph ) <-> ( y e. A -> ps ) ) )
12 7 9 11 cbvalv1
 |-  ( A. x ( x e. A -> ph ) <-> A. y ( y e. A -> ps ) )
13 df-ral
 |-  ( A. x e. A ph <-> A. x ( x e. A -> ph ) )
14 df-ral
 |-  ( A. y e. A ps <-> A. y ( y e. A -> ps ) )
15 12 13 14 3bitr4i
 |-  ( A. x e. A ph <-> A. y e. A ps )