Database  
				ZF (ZERMELO-FRAENKEL) SET THEORY  
				ZF Set Theory - start with the Axiom of Extensionality  
				Restricted quantification  
				Restricted universal and existential quantification  
				cbvralfw  
			 
				
		 
		 Metamath Proof Explorer 
		
			
		 
		 
		
		Description:   Rule used to change bound variables, using implicit substitution.
       Version of cbvralf  with a disjoint variable condition, which does not
       require ax-10  , ax-13  .  For a version not dependent on ax-11  and
       ax-12, see cbvralvw  .  (Contributed by NM , 7-Mar-2004)   Avoid
       ax-10  , ax-13  .  (Revised by GG , 23-May-2024) 
		
			
				
					 
					 
					Ref 
					Expression 
				 
					
						 
						Hypotheses 
						cbvralfw.1  
						|- F/_ x A  
					 
					
						 
						 
						cbvralfw.2  
						|- F/_ y A  
					 
					
						 
						 
						cbvralfw.3  
						|- F/ y ph  
					 
					
						 
						 
						cbvralfw.4  
						|- F/ x ps  
					 
					
						 
						 
						cbvralfw.5  
						|- ( x = y -> ( ph <-> ps ) )  
					 
				
					 
					Assertion 
					cbvralfw  
					|- ( A. x e. A ph <-> A. y e. A ps )  
				 
			
		 
		 
			
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1  
							
								
							 
							cbvralfw.1  
							 |-  F/_ x A  
						 
						
							2  
							
								
							 
							cbvralfw.2  
							 |-  F/_ y A  
						 
						
							3  
							
								
							 
							cbvralfw.3  
							 |-  F/ y ph  
						 
						
							4  
							
								
							 
							cbvralfw.4  
							 |-  F/ x ps  
						 
						
							5  
							
								
							 
							cbvralfw.5  
							 |-  ( x = y -> ( ph <-> ps ) )  
						 
						
							6  
							
								2 
							 
							nfcri  
							 |-  F/ y x e. A  
						 
						
							7  
							
								6  3 
							 
							nfim  
							 |-  F/ y ( x e. A -> ph )  
						 
						
							8  
							
								1 
							 
							nfcri  
							 |-  F/ x y e. A  
						 
						
							9  
							
								8  4 
							 
							nfim  
							 |-  F/ x ( y e. A -> ps )  
						 
						
							10  
							
								
							 
							eleq1w  
							 |-  ( x = y -> ( x e. A <-> y e. A ) )  
						 
						
							11  
							
								10  5 
							 
							imbi12d  
							 |-  ( x = y -> ( ( x e. A -> ph ) <-> ( y e. A -> ps ) ) )  
						 
						
							12  
							
								7  9  11 
							 
							cbvalv1  
							 |-  ( A. x ( x e. A -> ph ) <-> A. y ( y e. A -> ps ) )  
						 
						
							13  
							
								
							 
							df-ral  
							 |-  ( A. x e. A ph <-> A. x ( x e. A -> ph ) )  
						 
						
							14  
							
								
							 
							df-ral  
							 |-  ( A. y e. A ps <-> A. y ( y e. A -> ps ) )  
						 
						
							15  
							
								12  13  14 
							 
							3bitr4i  
							 |-  ( A. x e. A ph <-> A. y e. A ps )