| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cbvralf.1 | 
							 |-  F/_ x A  | 
						
						
							| 2 | 
							
								
							 | 
							cbvralf.2 | 
							 |-  F/_ y A  | 
						
						
							| 3 | 
							
								
							 | 
							cbvralf.3 | 
							 |-  F/ y ph  | 
						
						
							| 4 | 
							
								
							 | 
							cbvralf.4 | 
							 |-  F/ x ps  | 
						
						
							| 5 | 
							
								
							 | 
							cbvralf.5 | 
							 |-  ( x = y -> ( ph <-> ps ) )  | 
						
						
							| 6 | 
							
								
							 | 
							nfv | 
							 |-  F/ z ( x e. A -> ph )  | 
						
						
							| 7 | 
							
								1
							 | 
							nfcri | 
							 |-  F/ x z e. A  | 
						
						
							| 8 | 
							
								
							 | 
							nfs1v | 
							 |-  F/ x [ z / x ] ph  | 
						
						
							| 9 | 
							
								7 8
							 | 
							nfim | 
							 |-  F/ x ( z e. A -> [ z / x ] ph )  | 
						
						
							| 10 | 
							
								
							 | 
							eleq1w | 
							 |-  ( x = z -> ( x e. A <-> z e. A ) )  | 
						
						
							| 11 | 
							
								
							 | 
							sbequ12 | 
							 |-  ( x = z -> ( ph <-> [ z / x ] ph ) )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							imbi12d | 
							 |-  ( x = z -> ( ( x e. A -> ph ) <-> ( z e. A -> [ z / x ] ph ) ) )  | 
						
						
							| 13 | 
							
								6 9 12
							 | 
							cbvalv1 | 
							 |-  ( A. x ( x e. A -> ph ) <-> A. z ( z e. A -> [ z / x ] ph ) )  | 
						
						
							| 14 | 
							
								2
							 | 
							nfcri | 
							 |-  F/ y z e. A  | 
						
						
							| 15 | 
							
								3
							 | 
							nfsb | 
							 |-  F/ y [ z / x ] ph  | 
						
						
							| 16 | 
							
								14 15
							 | 
							nfim | 
							 |-  F/ y ( z e. A -> [ z / x ] ph )  | 
						
						
							| 17 | 
							
								
							 | 
							nfv | 
							 |-  F/ z ( y e. A -> ps )  | 
						
						
							| 18 | 
							
								
							 | 
							eleq1w | 
							 |-  ( z = y -> ( z e. A <-> y e. A ) )  | 
						
						
							| 19 | 
							
								
							 | 
							sbequ | 
							 |-  ( z = y -> ( [ z / x ] ph <-> [ y / x ] ph ) )  | 
						
						
							| 20 | 
							
								4 5
							 | 
							sbie | 
							 |-  ( [ y / x ] ph <-> ps )  | 
						
						
							| 21 | 
							
								19 20
							 | 
							bitrdi | 
							 |-  ( z = y -> ( [ z / x ] ph <-> ps ) )  | 
						
						
							| 22 | 
							
								18 21
							 | 
							imbi12d | 
							 |-  ( z = y -> ( ( z e. A -> [ z / x ] ph ) <-> ( y e. A -> ps ) ) )  | 
						
						
							| 23 | 
							
								16 17 22
							 | 
							cbvalv1 | 
							 |-  ( A. z ( z e. A -> [ z / x ] ph ) <-> A. y ( y e. A -> ps ) )  | 
						
						
							| 24 | 
							
								13 23
							 | 
							bitri | 
							 |-  ( A. x ( x e. A -> ph ) <-> A. y ( y e. A -> ps ) )  | 
						
						
							| 25 | 
							
								
							 | 
							df-ral | 
							 |-  ( A. x e. A ph <-> A. x ( x e. A -> ph ) )  | 
						
						
							| 26 | 
							
								
							 | 
							df-ral | 
							 |-  ( A. y e. A ps <-> A. y ( y e. A -> ps ) )  | 
						
						
							| 27 | 
							
								24 25 26
							 | 
							3bitr4i | 
							 |-  ( A. x e. A ph <-> A. y e. A ps )  |