| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cbvralf.1 | 
							⊢ Ⅎ 𝑥 𝐴  | 
						
						
							| 2 | 
							
								
							 | 
							cbvralf.2 | 
							⊢ Ⅎ 𝑦 𝐴  | 
						
						
							| 3 | 
							
								
							 | 
							cbvralf.3 | 
							⊢ Ⅎ 𝑦 𝜑  | 
						
						
							| 4 | 
							
								
							 | 
							cbvralf.4 | 
							⊢ Ⅎ 𝑥 𝜓  | 
						
						
							| 5 | 
							
								
							 | 
							cbvralf.5 | 
							⊢ ( 𝑥  =  𝑦  →  ( 𝜑  ↔  𝜓 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑧 ( 𝑥  ∈  𝐴  →  𝜑 )  | 
						
						
							| 7 | 
							
								1
							 | 
							nfcri | 
							⊢ Ⅎ 𝑥 𝑧  ∈  𝐴  | 
						
						
							| 8 | 
							
								
							 | 
							nfs1v | 
							⊢ Ⅎ 𝑥 [ 𝑧  /  𝑥 ] 𝜑  | 
						
						
							| 9 | 
							
								7 8
							 | 
							nfim | 
							⊢ Ⅎ 𝑥 ( 𝑧  ∈  𝐴  →  [ 𝑧  /  𝑥 ] 𝜑 )  | 
						
						
							| 10 | 
							
								
							 | 
							eleq1w | 
							⊢ ( 𝑥  =  𝑧  →  ( 𝑥  ∈  𝐴  ↔  𝑧  ∈  𝐴 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							sbequ12 | 
							⊢ ( 𝑥  =  𝑧  →  ( 𝜑  ↔  [ 𝑧  /  𝑥 ] 𝜑 ) )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							imbi12d | 
							⊢ ( 𝑥  =  𝑧  →  ( ( 𝑥  ∈  𝐴  →  𝜑 )  ↔  ( 𝑧  ∈  𝐴  →  [ 𝑧  /  𝑥 ] 𝜑 ) ) )  | 
						
						
							| 13 | 
							
								6 9 12
							 | 
							cbvalv1 | 
							⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝜑 )  ↔  ∀ 𝑧 ( 𝑧  ∈  𝐴  →  [ 𝑧  /  𝑥 ] 𝜑 ) )  | 
						
						
							| 14 | 
							
								2
							 | 
							nfcri | 
							⊢ Ⅎ 𝑦 𝑧  ∈  𝐴  | 
						
						
							| 15 | 
							
								3
							 | 
							nfsb | 
							⊢ Ⅎ 𝑦 [ 𝑧  /  𝑥 ] 𝜑  | 
						
						
							| 16 | 
							
								14 15
							 | 
							nfim | 
							⊢ Ⅎ 𝑦 ( 𝑧  ∈  𝐴  →  [ 𝑧  /  𝑥 ] 𝜑 )  | 
						
						
							| 17 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑧 ( 𝑦  ∈  𝐴  →  𝜓 )  | 
						
						
							| 18 | 
							
								
							 | 
							eleq1w | 
							⊢ ( 𝑧  =  𝑦  →  ( 𝑧  ∈  𝐴  ↔  𝑦  ∈  𝐴 ) )  | 
						
						
							| 19 | 
							
								
							 | 
							sbequ | 
							⊢ ( 𝑧  =  𝑦  →  ( [ 𝑧  /  𝑥 ] 𝜑  ↔  [ 𝑦  /  𝑥 ] 𝜑 ) )  | 
						
						
							| 20 | 
							
								4 5
							 | 
							sbie | 
							⊢ ( [ 𝑦  /  𝑥 ] 𝜑  ↔  𝜓 )  | 
						
						
							| 21 | 
							
								19 20
							 | 
							bitrdi | 
							⊢ ( 𝑧  =  𝑦  →  ( [ 𝑧  /  𝑥 ] 𝜑  ↔  𝜓 ) )  | 
						
						
							| 22 | 
							
								18 21
							 | 
							imbi12d | 
							⊢ ( 𝑧  =  𝑦  →  ( ( 𝑧  ∈  𝐴  →  [ 𝑧  /  𝑥 ] 𝜑 )  ↔  ( 𝑦  ∈  𝐴  →  𝜓 ) ) )  | 
						
						
							| 23 | 
							
								16 17 22
							 | 
							cbvalv1 | 
							⊢ ( ∀ 𝑧 ( 𝑧  ∈  𝐴  →  [ 𝑧  /  𝑥 ] 𝜑 )  ↔  ∀ 𝑦 ( 𝑦  ∈  𝐴  →  𝜓 ) )  | 
						
						
							| 24 | 
							
								13 23
							 | 
							bitri | 
							⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝜑 )  ↔  ∀ 𝑦 ( 𝑦  ∈  𝐴  →  𝜓 ) )  | 
						
						
							| 25 | 
							
								
							 | 
							df-ral | 
							⊢ ( ∀ 𝑥  ∈  𝐴 𝜑  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝜑 ) )  | 
						
						
							| 26 | 
							
								
							 | 
							df-ral | 
							⊢ ( ∀ 𝑦  ∈  𝐴 𝜓  ↔  ∀ 𝑦 ( 𝑦  ∈  𝐴  →  𝜓 ) )  | 
						
						
							| 27 | 
							
								24 25 26
							 | 
							3bitr4i | 
							⊢ ( ∀ 𝑥  ∈  𝐴 𝜑  ↔  ∀ 𝑦  ∈  𝐴 𝜓 )  |