Metamath Proof Explorer


Theorem cbviinv

Description: Change bound variables in an indexed intersection. (Contributed by Jeff Hankins, 26-Aug-2009) Add disjoint variable condition to avoid ax-13 . See cbviinvg for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024)

Ref Expression
Hypothesis cbviunv.1 x=yB=C
Assertion cbviinv xAB=yAC

Proof

Step Hyp Ref Expression
1 cbviunv.1 x=yB=C
2 nfcv _yB
3 nfcv _xC
4 2 3 1 cbviin xAB=yAC