Metamath Proof Explorer


Theorem cbvmpov

Description: Rule to change the bound variable in a maps-to function, using implicit substitution. With a longer proof analogous to cbvmpt , some distinct variable requirements could be eliminated. (Contributed by NM, 11-Jun-2013)

Ref Expression
Hypotheses cbvmpov.1 x=zC=E
cbvmpov.2 y=wE=D
Assertion cbvmpov xA,yBC=zA,wBD

Proof

Step Hyp Ref Expression
1 cbvmpov.1 x=zC=E
2 cbvmpov.2 y=wE=D
3 nfcv _zC
4 nfcv _wC
5 nfcv _xD
6 nfcv _yD
7 1 2 sylan9eq x=zy=wC=D
8 3 4 5 6 7 cbvmpo xA,yBC=zA,wBD