Metamath Proof Explorer


Theorem cbvprodv

Description: Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017)

Ref Expression
Hypothesis cbvprod.1 j=kB=C
Assertion cbvprodv jAB=kAC

Proof

Step Hyp Ref Expression
1 cbvprod.1 j=kB=C
2 nfcv _kA
3 nfcv _jA
4 nfcv _kB
5 nfcv _jC
6 1 2 3 4 5 cbvprod jAB=kAC