Metamath Proof Explorer


Theorem ccat2s1cl

Description: The concatenation of two singleton words is a word. (Contributed by Alexander van der Vekens, 22-Sep-2018)

Ref Expression
Assertion ccat2s1cl X V Y V ⟨“ X ”⟩ ++ ⟨“ Y ”⟩ Word V

Proof

Step Hyp Ref Expression
1 s1cl X V ⟨“ X ”⟩ Word V
2 ccatws1cl ⟨“ X ”⟩ Word V Y V ⟨“ X ”⟩ ++ ⟨“ Y ”⟩ Word V
3 1 2 sylan X V Y V ⟨“ X ”⟩ ++ ⟨“ Y ”⟩ Word V