Metamath Proof Explorer


Theorem cdleme0a

Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 12-Jun-2012)

Ref Expression
Hypotheses cdleme0.l ˙=K
cdleme0.j ˙=joinK
cdleme0.m ˙=meetK
cdleme0.a A=AtomsK
cdleme0.h H=LHypK
cdleme0.u U=P˙Q˙W
Assertion cdleme0a KHLWHPA¬P˙WQAPQUA

Proof

Step Hyp Ref Expression
1 cdleme0.l ˙=K
2 cdleme0.j ˙=joinK
3 cdleme0.m ˙=meetK
4 cdleme0.a A=AtomsK
5 cdleme0.h H=LHypK
6 cdleme0.u U=P˙Q˙W
7 1 2 3 4 5 6 lhpat2 KHLWHPA¬P˙WQAPQUA