Metamath Proof Explorer


Theorem cdleme0b

Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 13-Jun-2012)

Ref Expression
Hypotheses cdleme0.l ˙ = K
cdleme0.j ˙ = join K
cdleme0.m ˙ = meet K
cdleme0.a A = Atoms K
cdleme0.h H = LHyp K
cdleme0.u U = P ˙ Q ˙ W
Assertion cdleme0b K HL W H P A ¬ P ˙ W Q A U P

Proof

Step Hyp Ref Expression
1 cdleme0.l ˙ = K
2 cdleme0.j ˙ = join K
3 cdleme0.m ˙ = meet K
4 cdleme0.a A = Atoms K
5 cdleme0.h H = LHyp K
6 cdleme0.u U = P ˙ Q ˙ W
7 simp1l K HL W H P A ¬ P ˙ W Q A K HL
8 7 hllatd K HL W H P A ¬ P ˙ W Q A K Lat
9 simp2l K HL W H P A ¬ P ˙ W Q A P A
10 eqid Base K = Base K
11 10 4 atbase P A P Base K
12 9 11 syl K HL W H P A ¬ P ˙ W Q A P Base K
13 10 4 atbase Q A Q Base K
14 13 3ad2ant3 K HL W H P A ¬ P ˙ W Q A Q Base K
15 10 2 latjcl K Lat P Base K Q Base K P ˙ Q Base K
16 8 12 14 15 syl3anc K HL W H P A ¬ P ˙ W Q A P ˙ Q Base K
17 simp1r K HL W H P A ¬ P ˙ W Q A W H
18 10 5 lhpbase W H W Base K
19 17 18 syl K HL W H P A ¬ P ˙ W Q A W Base K
20 10 1 3 latmle2 K Lat P ˙ Q Base K W Base K P ˙ Q ˙ W ˙ W
21 8 16 19 20 syl3anc K HL W H P A ¬ P ˙ W Q A P ˙ Q ˙ W ˙ W
22 6 21 eqbrtrid K HL W H P A ¬ P ˙ W Q A U ˙ W
23 simp2r K HL W H P A ¬ P ˙ W Q A ¬ P ˙ W
24 nbrne2 U ˙ W ¬ P ˙ W U P
25 22 23 24 syl2anc K HL W H P A ¬ P ˙ W Q A U P