Metamath Proof Explorer


Definition df-lhyp

Description: Define the set of lattice hyperplanes, which are all lattice elements covered by 1 (i.e., all co-atoms). We call them "hyperplanes" instead of "co-atoms" in analogy with projective geometry hyperplanes. (Contributed by NM, 11-May-2012)

Ref Expression
Assertion df-lhyp LHyp=kVxBasek|xk1.k

Detailed syntax breakdown

Step Hyp Ref Expression
0 clh classLHyp
1 vk setvark
2 cvv classV
3 vx setvarx
4 cbs classBase
5 1 cv setvark
6 5 4 cfv classBasek
7 3 cv setvarx
8 ccvr class
9 5 8 cfv classk
10 cp1 class1.
11 5 10 cfv class1.k
12 7 11 9 wbr wffxk1.k
13 12 3 6 crab classxBasek|xk1.k
14 1 2 13 cmpt classkVxBasek|xk1.k
15 0 14 wceq wffLHyp=kVxBasek|xk1.k