Metamath Proof Explorer


Theorem latmle2

Description: A meet is less than or equal to its second argument. (Contributed by NM, 21-Oct-2011)

Ref Expression
Hypotheses latmle.b B=BaseK
latmle.l ˙=K
latmle.m ˙=meetK
Assertion latmle2 KLatXBYBX˙Y˙Y

Proof

Step Hyp Ref Expression
1 latmle.b B=BaseK
2 latmle.l ˙=K
3 latmle.m ˙=meetK
4 simp1 KLatXBYBKLat
5 simp2 KLatXBYBXB
6 simp3 KLatXBYBYB
7 eqid joinK=joinK
8 1 7 3 4 5 6 latcl2 KLatXBYBXYdomjoinKXYdom˙
9 8 simprd KLatXBYBXYdom˙
10 1 2 3 4 5 6 9 lemeet2 KLatXBYBX˙Y˙Y