Metamath Proof Explorer


Theorem latlem12

Description: An element is less than or equal to a meet iff the element is less than or equal to each argument of the meet. (Contributed by NM, 21-Oct-2011)

Ref Expression
Hypotheses latmle.b B = Base K
latmle.l ˙ = K
latmle.m ˙ = meet K
Assertion latlem12 K Lat X B Y B Z B X ˙ Y X ˙ Z X ˙ Y ˙ Z

Proof

Step Hyp Ref Expression
1 latmle.b B = Base K
2 latmle.l ˙ = K
3 latmle.m ˙ = meet K
4 latpos K Lat K Poset
5 4 adantr K Lat X B Y B Z B K Poset
6 simpr2 K Lat X B Y B Z B Y B
7 simpr3 K Lat X B Y B Z B Z B
8 simpr1 K Lat X B Y B Z B X B
9 eqid join K = join K
10 simpl K Lat X B Y B Z B K Lat
11 1 9 3 10 6 7 latcl2 K Lat X B Y B Z B Y Z dom join K Y Z dom ˙
12 11 simprd K Lat X B Y B Z B Y Z dom ˙
13 1 2 3 5 6 7 8 12 meetle K Lat X B Y B Z B X ˙ Y X ˙ Z X ˙ Y ˙ Z