Metamath Proof Explorer


Theorem latlem12

Description: An element is less than or equal to a meet iff the element is less than or equal to each argument of the meet. (Contributed by NM, 21-Oct-2011)

Ref Expression
Hypotheses latmle.b B=BaseK
latmle.l ˙=K
latmle.m ˙=meetK
Assertion latlem12 KLatXBYBZBX˙YX˙ZX˙Y˙Z

Proof

Step Hyp Ref Expression
1 latmle.b B=BaseK
2 latmle.l ˙=K
3 latmle.m ˙=meetK
4 latpos KLatKPoset
5 4 adantr KLatXBYBZBKPoset
6 simpr2 KLatXBYBZBYB
7 simpr3 KLatXBYBZBZB
8 simpr1 KLatXBYBZBXB
9 eqid joinK=joinK
10 simpl KLatXBYBZBKLat
11 1 9 3 10 6 7 latcl2 KLatXBYBZBYZdomjoinKYZdom˙
12 11 simprd KLatXBYBZBYZdom˙
13 1 2 3 5 6 7 8 12 meetle KLatXBYBZBX˙YX˙ZX˙Y˙Z