| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdleme0.l |
|- .<_ = ( le ` K ) |
| 2 |
|
cdleme0.j |
|- .\/ = ( join ` K ) |
| 3 |
|
cdleme0.m |
|- ./\ = ( meet ` K ) |
| 4 |
|
cdleme0.a |
|- A = ( Atoms ` K ) |
| 5 |
|
cdleme0.h |
|- H = ( LHyp ` K ) |
| 6 |
|
cdleme0.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
| 7 |
|
simp1l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) -> K e. HL ) |
| 8 |
7
|
hllatd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) -> K e. Lat ) |
| 9 |
|
simp2l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) -> P e. A ) |
| 10 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 11 |
10 4
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
| 12 |
9 11
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) -> P e. ( Base ` K ) ) |
| 13 |
10 4
|
atbase |
|- ( Q e. A -> Q e. ( Base ` K ) ) |
| 14 |
13
|
3ad2ant3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) -> Q e. ( Base ` K ) ) |
| 15 |
10 2
|
latjcl |
|- ( ( K e. Lat /\ P e. ( Base ` K ) /\ Q e. ( Base ` K ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
| 16 |
8 12 14 15
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
| 17 |
|
simp1r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) -> W e. H ) |
| 18 |
10 5
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
| 19 |
17 18
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) -> W e. ( Base ` K ) ) |
| 20 |
10 1 3
|
latmle2 |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( P .\/ Q ) ./\ W ) .<_ W ) |
| 21 |
8 16 19 20
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) -> ( ( P .\/ Q ) ./\ W ) .<_ W ) |
| 22 |
6 21
|
eqbrtrid |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) -> U .<_ W ) |
| 23 |
|
simp2r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) -> -. P .<_ W ) |
| 24 |
|
nbrne2 |
|- ( ( U .<_ W /\ -. P .<_ W ) -> U =/= P ) |
| 25 |
22 23 24
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) -> U =/= P ) |