Step |
Hyp |
Ref |
Expression |
1 |
|
lhpbase.b |
|- B = ( Base ` K ) |
2 |
|
lhpbase.h |
|- H = ( LHyp ` K ) |
3 |
|
n0i |
|- ( W e. H -> -. H = (/) ) |
4 |
2
|
eqeq1i |
|- ( H = (/) <-> ( LHyp ` K ) = (/) ) |
5 |
3 4
|
sylnib |
|- ( W e. H -> -. ( LHyp ` K ) = (/) ) |
6 |
|
fvprc |
|- ( -. K e. _V -> ( LHyp ` K ) = (/) ) |
7 |
5 6
|
nsyl2 |
|- ( W e. H -> K e. _V ) |
8 |
|
eqid |
|- ( 1. ` K ) = ( 1. ` K ) |
9 |
|
eqid |
|- ( |
10 |
1 8 9 2
|
islhp |
|- ( K e. _V -> ( W e. H <-> ( W e. B /\ W ( |
11 |
10
|
simprbda |
|- ( ( K e. _V /\ W e. H ) -> W e. B ) |
12 |
7 11
|
mpancom |
|- ( W e. H -> W e. B ) |