Metamath Proof Explorer


Theorem lhpbase

Description: A co-atom is a member of the lattice base set (i.e., a lattice element). (Contributed by NM, 18-May-2012)

Ref Expression
Hypotheses lhpbase.b
|- B = ( Base ` K )
lhpbase.h
|- H = ( LHyp ` K )
Assertion lhpbase
|- ( W e. H -> W e. B )

Proof

Step Hyp Ref Expression
1 lhpbase.b
 |-  B = ( Base ` K )
2 lhpbase.h
 |-  H = ( LHyp ` K )
3 n0i
 |-  ( W e. H -> -. H = (/) )
4 2 eqeq1i
 |-  ( H = (/) <-> ( LHyp ` K ) = (/) )
5 3 4 sylnib
 |-  ( W e. H -> -. ( LHyp ` K ) = (/) )
6 fvprc
 |-  ( -. K e. _V -> ( LHyp ` K ) = (/) )
7 5 6 nsyl2
 |-  ( W e. H -> K e. _V )
8 eqid
 |-  ( 1. ` K ) = ( 1. ` K )
9 eqid
 |-  ( 
10 1 8 9 2 islhp
 |-  ( K e. _V -> ( W e. H <-> ( W e. B /\ W ( 
11 10 simprbda
 |-  ( ( K e. _V /\ W e. H ) -> W e. B )
12 7 11 mpancom
 |-  ( W e. H -> W e. B )