Description: A co-atom is a member of the lattice base set (i.e., a lattice element). (Contributed by NM, 18-May-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lhpbase.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
lhpbase.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | ||
Assertion | lhpbase | ⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lhpbase.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
2 | lhpbase.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | |
3 | n0i | ⊢ ( 𝑊 ∈ 𝐻 → ¬ 𝐻 = ∅ ) | |
4 | 2 | eqeq1i | ⊢ ( 𝐻 = ∅ ↔ ( LHyp ‘ 𝐾 ) = ∅ ) |
5 | 3 4 | sylnib | ⊢ ( 𝑊 ∈ 𝐻 → ¬ ( LHyp ‘ 𝐾 ) = ∅ ) |
6 | fvprc | ⊢ ( ¬ 𝐾 ∈ V → ( LHyp ‘ 𝐾 ) = ∅ ) | |
7 | 5 6 | nsyl2 | ⊢ ( 𝑊 ∈ 𝐻 → 𝐾 ∈ V ) |
8 | eqid | ⊢ ( 1. ‘ 𝐾 ) = ( 1. ‘ 𝐾 ) | |
9 | eqid | ⊢ ( ⋖ ‘ 𝐾 ) = ( ⋖ ‘ 𝐾 ) | |
10 | 1 8 9 2 | islhp | ⊢ ( 𝐾 ∈ V → ( 𝑊 ∈ 𝐻 ↔ ( 𝑊 ∈ 𝐵 ∧ 𝑊 ( ⋖ ‘ 𝐾 ) ( 1. ‘ 𝐾 ) ) ) ) |
11 | 10 | simprbda | ⊢ ( ( 𝐾 ∈ V ∧ 𝑊 ∈ 𝐻 ) → 𝑊 ∈ 𝐵 ) |
12 | 7 11 | mpancom | ⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵 ) |