Metamath Proof Explorer


Theorem lhpbase

Description: A co-atom is a member of the lattice base set (i.e., a lattice element). (Contributed by NM, 18-May-2012)

Ref Expression
Hypotheses lhpbase.b 𝐵 = ( Base ‘ 𝐾 )
lhpbase.h 𝐻 = ( LHyp ‘ 𝐾 )
Assertion lhpbase ( 𝑊𝐻𝑊𝐵 )

Proof

Step Hyp Ref Expression
1 lhpbase.b 𝐵 = ( Base ‘ 𝐾 )
2 lhpbase.h 𝐻 = ( LHyp ‘ 𝐾 )
3 n0i ( 𝑊𝐻 → ¬ 𝐻 = ∅ )
4 2 eqeq1i ( 𝐻 = ∅ ↔ ( LHyp ‘ 𝐾 ) = ∅ )
5 3 4 sylnib ( 𝑊𝐻 → ¬ ( LHyp ‘ 𝐾 ) = ∅ )
6 fvprc ( ¬ 𝐾 ∈ V → ( LHyp ‘ 𝐾 ) = ∅ )
7 5 6 nsyl2 ( 𝑊𝐻𝐾 ∈ V )
8 eqid ( 1. ‘ 𝐾 ) = ( 1. ‘ 𝐾 )
9 eqid ( ⋖ ‘ 𝐾 ) = ( ⋖ ‘ 𝐾 )
10 1 8 9 2 islhp ( 𝐾 ∈ V → ( 𝑊𝐻 ↔ ( 𝑊𝐵𝑊 ( ⋖ ‘ 𝐾 ) ( 1. ‘ 𝐾 ) ) ) )
11 10 simprbda ( ( 𝐾 ∈ V ∧ 𝑊𝐻 ) → 𝑊𝐵 )
12 7 11 mpancom ( 𝑊𝐻𝑊𝐵 )