Metamath Proof Explorer


Theorem lhpbase

Description: A co-atom is a member of the lattice base set (i.e., a lattice element). (Contributed by NM, 18-May-2012)

Ref Expression
Hypotheses lhpbase.b B = Base K
lhpbase.h H = LHyp K
Assertion lhpbase W H W B

Proof

Step Hyp Ref Expression
1 lhpbase.b B = Base K
2 lhpbase.h H = LHyp K
3 n0i W H ¬ H =
4 2 eqeq1i H = LHyp K =
5 3 4 sylnib W H ¬ LHyp K =
6 fvprc ¬ K V LHyp K =
7 5 6 nsyl2 W H K V
8 eqid 1. K = 1. K
9 eqid K = K
10 1 8 9 2 islhp K V W H W B W K 1. K
11 10 simprbda K V W H W B
12 7 11 mpancom W H W B