Metamath Proof Explorer


Theorem lhpbase

Description: A co-atom is a member of the lattice base set (i.e., a lattice element). (Contributed by NM, 18-May-2012)

Ref Expression
Hypotheses lhpbase.b B=BaseK
lhpbase.h H=LHypK
Assertion lhpbase WHWB

Proof

Step Hyp Ref Expression
1 lhpbase.b B=BaseK
2 lhpbase.h H=LHypK
3 n0i WH¬H=
4 2 eqeq1i H=LHypK=
5 3 4 sylnib WH¬LHypK=
6 fvprc ¬KVLHypK=
7 5 6 nsyl2 WHKV
8 eqid 1.K=1.K
9 eqid K=K
10 1 8 9 2 islhp KVWHWBWK1.K
11 10 simprbda KVWHWB
12 7 11 mpancom WHWB