Metamath Proof Explorer


Theorem lhp1cvr

Description: The lattice unit covers a co-atom (lattice hyperplane). (Contributed by NM, 18-May-2012)

Ref Expression
Hypotheses lhp1cvr.u 1 ˙ = 1. K
lhp1cvr.c C = K
lhp1cvr.h H = LHyp K
Assertion lhp1cvr K A W H W C 1 ˙

Proof

Step Hyp Ref Expression
1 lhp1cvr.u 1 ˙ = 1. K
2 lhp1cvr.c C = K
3 lhp1cvr.h H = LHyp K
4 eqid Base K = Base K
5 4 1 2 3 islhp K A W H W Base K W C 1 ˙
6 5 simplbda K A W H W C 1 ˙