Metamath Proof Explorer


Theorem lhp1cvr

Description: The lattice unit covers a co-atom (lattice hyperplane). (Contributed by NM, 18-May-2012)

Ref Expression
Hypotheses lhp1cvr.u
|- .1. = ( 1. ` K )
lhp1cvr.c
|- C = ( 
lhp1cvr.h
|- H = ( LHyp ` K )
Assertion lhp1cvr
|- ( ( K e. A /\ W e. H ) -> W C .1. )

Proof

Step Hyp Ref Expression
1 lhp1cvr.u
 |-  .1. = ( 1. ` K )
2 lhp1cvr.c
 |-  C = ( 
3 lhp1cvr.h
 |-  H = ( LHyp ` K )
4 eqid
 |-  ( Base ` K ) = ( Base ` K )
5 4 1 2 3 islhp
 |-  ( K e. A -> ( W e. H <-> ( W e. ( Base ` K ) /\ W C .1. ) ) )
6 5 simplbda
 |-  ( ( K e. A /\ W e. H ) -> W C .1. )