Metamath Proof Explorer


Theorem lhp1cvr

Description: The lattice unit covers a co-atom (lattice hyperplane). (Contributed by NM, 18-May-2012)

Ref Expression
Hypotheses lhp1cvr.u 1 = ( 1. ‘ 𝐾 )
lhp1cvr.c 𝐶 = ( ⋖ ‘ 𝐾 )
lhp1cvr.h 𝐻 = ( LHyp ‘ 𝐾 )
Assertion lhp1cvr ( ( 𝐾𝐴𝑊𝐻 ) → 𝑊 𝐶 1 )

Proof

Step Hyp Ref Expression
1 lhp1cvr.u 1 = ( 1. ‘ 𝐾 )
2 lhp1cvr.c 𝐶 = ( ⋖ ‘ 𝐾 )
3 lhp1cvr.h 𝐻 = ( LHyp ‘ 𝐾 )
4 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
5 4 1 2 3 islhp ( 𝐾𝐴 → ( 𝑊𝐻 ↔ ( 𝑊 ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 𝐶 1 ) ) )
6 5 simplbda ( ( 𝐾𝐴𝑊𝐻 ) → 𝑊 𝐶 1 )