Metamath Proof Explorer


Theorem cdleme0c

Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 12-Jun-2012)

Ref Expression
Hypotheses cdleme0.l ˙=K
cdleme0.j ˙=joinK
cdleme0.m ˙=meetK
cdleme0.a A=AtomsK
cdleme0.h H=LHypK
cdleme0.u U=P˙Q˙W
Assertion cdleme0c KHLWHPAQARA¬R˙WUR

Proof

Step Hyp Ref Expression
1 cdleme0.l ˙=K
2 cdleme0.j ˙=joinK
3 cdleme0.m ˙=meetK
4 cdleme0.a A=AtomsK
5 cdleme0.h H=LHypK
6 cdleme0.u U=P˙Q˙W
7 simp1l KHLWHPAQARA¬R˙WKHL
8 7 hllatd KHLWHPAQARA¬R˙WKLat
9 simp2l KHLWHPAQARA¬R˙WPA
10 eqid BaseK=BaseK
11 10 4 atbase PAPBaseK
12 9 11 syl KHLWHPAQARA¬R˙WPBaseK
13 simp2r KHLWHPAQARA¬R˙WQA
14 10 4 atbase QAQBaseK
15 13 14 syl KHLWHPAQARA¬R˙WQBaseK
16 10 2 latjcl KLatPBaseKQBaseKP˙QBaseK
17 8 12 15 16 syl3anc KHLWHPAQARA¬R˙WP˙QBaseK
18 simp1r KHLWHPAQARA¬R˙WWH
19 10 5 lhpbase WHWBaseK
20 18 19 syl KHLWHPAQARA¬R˙WWBaseK
21 10 1 3 latmle2 KLatP˙QBaseKWBaseKP˙Q˙W˙W
22 8 17 20 21 syl3anc KHLWHPAQARA¬R˙WP˙Q˙W˙W
23 6 22 eqbrtrid KHLWHPAQARA¬R˙WU˙W
24 simp3r KHLWHPAQARA¬R˙W¬R˙W
25 nbrne2 U˙W¬R˙WUR
26 23 24 25 syl2anc KHLWHPAQARA¬R˙WUR