Metamath Proof Explorer


Theorem cdleme21a

Description: Part of proof of Lemma E in Crawley p. 115. (Contributed by NM, 28-Nov-2012)

Ref Expression
Hypotheses cdleme21a.l ˙=K
cdleme21a.j ˙=joinK
cdleme21a.a A=AtomsK
Assertion cdleme21a KHLPAQASA¬S˙P˙QzAP˙z=S˙zSz

Proof

Step Hyp Ref Expression
1 cdleme21a.l ˙=K
2 cdleme21a.j ˙=joinK
3 cdleme21a.a A=AtomsK
4 simp11 KHLPAQASA¬S˙P˙QzAP˙z=S˙zKHL
5 hlcvl KHLKCvLat
6 4 5 syl KHLPAQASA¬S˙P˙QzAP˙z=S˙zKCvLat
7 simp12 KHLPAQASA¬S˙P˙QzAP˙z=S˙zPA
8 simp2l KHLPAQASA¬S˙P˙QzAP˙z=S˙zSA
9 simp3l KHLPAQASA¬S˙P˙QzAP˙z=S˙zzA
10 simp13 KHLPAQASA¬S˙P˙QzAP˙z=S˙zQA
11 simp2r KHLPAQASA¬S˙P˙QzAP˙z=S˙z¬S˙P˙Q
12 1 2 3 atnlej1 KHLSAPAQA¬S˙P˙QSP
13 12 necomd KHLSAPAQA¬S˙P˙QPS
14 4 8 7 10 11 13 syl131anc KHLPAQASA¬S˙P˙QzAP˙z=S˙zPS
15 simp3r KHLPAQASA¬S˙P˙QzAP˙z=S˙zP˙z=S˙z
16 3 2 cvlsupr6 KCvLatPASAzAPSP˙z=S˙zzS
17 16 necomd KCvLatPASAzAPSP˙z=S˙zSz
18 6 7 8 9 14 15 17 syl132anc KHLPAQASA¬S˙P˙QzAP˙z=S˙zSz