Metamath Proof Explorer


Theorem cdleme9taN

Description: Part of proof of Lemma E in Crawley p. 113. X represents t_1, which we prove is an atom. (Contributed by NM, 8-Oct-2012) (New usage is discouraged.)

Ref Expression
Hypotheses cdleme8t.l ˙=K
cdleme8t.j ˙=joinK
cdleme8t.m ˙=meetK
cdleme8t.a A=AtomsK
cdleme8t.h H=LHypK
cdleme8t.x X=P˙T˙W
Assertion cdleme9taN KHLWHPA¬P˙WTAPTXA

Proof

Step Hyp Ref Expression
1 cdleme8t.l ˙=K
2 cdleme8t.j ˙=joinK
3 cdleme8t.m ˙=meetK
4 cdleme8t.a A=AtomsK
5 cdleme8t.h H=LHypK
6 cdleme8t.x X=P˙T˙W
7 1 2 3 4 5 6 cdleme9a KHLWHPA¬P˙WTAPTXA