Metamath Proof Explorer


Theorem cdlemefr45

Description: Value of f(r) when r is an atom not under pq, using very compact hypotheses. TODO: FIX COMMENT. (Contributed by NM, 1-Apr-2013)

Ref Expression
Hypotheses cdlemef45.b B=BaseK
cdlemef45.l ˙=K
cdlemef45.j ˙=joinK
cdlemef45.m ˙=meetK
cdlemef45.a A=AtomsK
cdlemef45.h H=LHypK
cdlemef45.u U=P˙Q˙W
cdlemef45.d D=t˙U˙Q˙P˙t˙W
cdlemef45.f F=xBifPQ¬x˙WιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙Wx
Assertion cdlemefr45 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QFR=R/tD

Proof

Step Hyp Ref Expression
1 cdlemef45.b B=BaseK
2 cdlemef45.l ˙=K
3 cdlemef45.j ˙=joinK
4 cdlemef45.m ˙=meetK
5 cdlemef45.a A=AtomsK
6 cdlemef45.h H=LHypK
7 cdlemef45.u U=P˙Q˙W
8 cdlemef45.d D=t˙U˙Q˙P˙t˙W
9 cdlemef45.f F=xBifPQ¬x˙WιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙Wx
10 eqid ιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙W=ιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙W
11 1 2 3 4 5 6 7 8 10 9 cdlemefr44 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QFR=R/tD