Metamath Proof Explorer


Theorem cdlemkuv2-2

Description: Part of proof of Lemma K of Crawley p. 118. Line 16 on p. 119 for i = 2, where sigma_2 (p) is V , f_2 is C , and k_2 is Q . (Contributed by NM, 2-Jul-2013)

Ref Expression
Hypotheses cdlemk2.b B=BaseK
cdlemk2.l ˙=K
cdlemk2.j ˙=joinK
cdlemk2.m ˙=meetK
cdlemk2.a A=AtomsK
cdlemk2.h H=LHypK
cdlemk2.t T=LTrnKW
cdlemk2.r R=trLKW
cdlemk2.s S=fTιiT|iP=P˙Rf˙NP˙RfF-1
cdlemk2.q Q=SC
cdlemk2.v V=dTιkT|kP=P˙Rd˙QP˙RdC-1
Assertion cdlemkuv2-2 KHLWHRF=RNGTFTCTNTRCRFRCRGFIBGIBCIBPA¬P˙WVGP=P˙RG˙QP˙RGC-1

Proof

Step Hyp Ref Expression
1 cdlemk2.b B=BaseK
2 cdlemk2.l ˙=K
3 cdlemk2.j ˙=joinK
4 cdlemk2.m ˙=meetK
5 cdlemk2.a A=AtomsK
6 cdlemk2.h H=LHypK
7 cdlemk2.t T=LTrnKW
8 cdlemk2.r R=trLKW
9 cdlemk2.s S=fTιiT|iP=P˙Rf˙NP˙RfF-1
10 cdlemk2.q Q=SC
11 cdlemk2.v V=dTιkT|kP=P˙Rd˙QP˙RdC-1
12 1 2 3 4 5 6 7 8 9 10 11 cdlemkuv2 KHLWHRF=RNGTFTCTNTRCRFRCRGFIBGIBCIBPA¬P˙WVGP=P˙RG˙QP˙RGC-1