Metamath Proof Explorer


Theorem cdlemkuv2

Description: Part of proof of Lemma K of Crawley p. 118. Line 16 on p. 119 for i = 1, where sigma_1 (p) is U , f_1 is D , and k_1 is O . (Contributed by NM, 2-Jul-2013)

Ref Expression
Hypotheses cdlemk1.b B = Base K
cdlemk1.l ˙ = K
cdlemk1.j ˙ = join K
cdlemk1.m ˙ = meet K
cdlemk1.a A = Atoms K
cdlemk1.h H = LHyp K
cdlemk1.t T = LTrn K W
cdlemk1.r R = trL K W
cdlemk1.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
cdlemk1.o O = S D
cdlemk1.u U = e T ι j T | j P = P ˙ R e ˙ O P ˙ R e D -1
Assertion cdlemkuv2 K HL W H R F = R N G T F T D T N T R D R F R D R G F I B G I B D I B P A ¬ P ˙ W U G P = P ˙ R G ˙ O P ˙ R G D -1

Proof

Step Hyp Ref Expression
1 cdlemk1.b B = Base K
2 cdlemk1.l ˙ = K
3 cdlemk1.j ˙ = join K
4 cdlemk1.m ˙ = meet K
5 cdlemk1.a A = Atoms K
6 cdlemk1.h H = LHyp K
7 cdlemk1.t T = LTrn K W
8 cdlemk1.r R = trL K W
9 cdlemk1.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
10 cdlemk1.o O = S D
11 cdlemk1.u U = e T ι j T | j P = P ˙ R e ˙ O P ˙ R e D -1
12 simp13 K HL W H R F = R N G T F T D T N T R D R F R D R G F I B G I B D I B P A ¬ P ˙ W G T
13 1 2 3 5 6 7 8 4 11 cdlemksv G T U G = ι j T | j P = P ˙ R G ˙ O P ˙ R G D -1
14 12 13 syl K HL W H R F = R N G T F T D T N T R D R F R D R G F I B G I B D I B P A ¬ P ˙ W U G = ι j T | j P = P ˙ R G ˙ O P ˙ R G D -1
15 14 eqcomd K HL W H R F = R N G T F T D T N T R D R F R D R G F I B G I B D I B P A ¬ P ˙ W ι j T | j P = P ˙ R G ˙ O P ˙ R G D -1 = U G
16 1 2 3 4 5 6 7 8 9 10 11 cdlemkuel K HL W H R F = R N G T F T D T N T R D R F R D R G F I B G I B D I B P A ¬ P ˙ W U G T
17 simp11l K HL W H R F = R N G T F T D T N T R D R F R D R G F I B G I B D I B P A ¬ P ˙ W K HL
18 simp11r K HL W H R F = R N G T F T D T N T R D R F R D R G F I B G I B D I B P A ¬ P ˙ W W H
19 simp33 K HL W H R F = R N G T F T D T N T R D R F R D R G F I B G I B D I B P A ¬ P ˙ W P A ¬ P ˙ W
20 1 2 3 4 5 6 7 8 9 10 cdlemk16a K HL W H R F = R N G T F T D T N T R D R F R D R G F I B G I B D I B P A ¬ P ˙ W P ˙ R G ˙ O P ˙ R G D -1 A ¬ P ˙ R G ˙ O P ˙ R G D -1 ˙ W
21 2 5 6 7 cdleme K HL W H P A ¬ P ˙ W P ˙ R G ˙ O P ˙ R G D -1 A ¬ P ˙ R G ˙ O P ˙ R G D -1 ˙ W ∃! j T j P = P ˙ R G ˙ O P ˙ R G D -1
22 17 18 19 20 21 syl211anc K HL W H R F = R N G T F T D T N T R D R F R D R G F I B G I B D I B P A ¬ P ˙ W ∃! j T j P = P ˙ R G ˙ O P ˙ R G D -1
23 nfcv _ j T
24 nfriota1 _ j ι j T | j P = P ˙ R e ˙ O P ˙ R e D -1
25 23 24 nfmpt _ j e T ι j T | j P = P ˙ R e ˙ O P ˙ R e D -1
26 11 25 nfcxfr _ j U
27 nfcv _ j G
28 26 27 nffv _ j U G
29 nfcv _ j P
30 28 29 nffv _ j U G P
31 30 nfeq1 j U G P = P ˙ R G ˙ O P ˙ R G D -1
32 fveq1 j = U G j P = U G P
33 32 eqeq1d j = U G j P = P ˙ R G ˙ O P ˙ R G D -1 U G P = P ˙ R G ˙ O P ˙ R G D -1
34 28 31 33 riota2f U G T ∃! j T j P = P ˙ R G ˙ O P ˙ R G D -1 U G P = P ˙ R G ˙ O P ˙ R G D -1 ι j T | j P = P ˙ R G ˙ O P ˙ R G D -1 = U G
35 16 22 34 syl2anc K HL W H R F = R N G T F T D T N T R D R F R D R G F I B G I B D I B P A ¬ P ˙ W U G P = P ˙ R G ˙ O P ˙ R G D -1 ι j T | j P = P ˙ R G ˙ O P ˙ R G D -1 = U G
36 15 35 mpbird K HL W H R F = R N G T F T D T N T R D R F R D R G F I B G I B D I B P A ¬ P ˙ W U G P = P ˙ R G ˙ O P ˙ R G D -1