Metamath Proof Explorer


Theorem riota2f

Description: This theorem shows a condition that allows to represent a descriptor with a class expression B . (Contributed by NM, 23-Aug-2011) (Revised by Mario Carneiro, 15-Oct-2016)

Ref Expression
Hypotheses riota2f.1 _xB
riota2f.2 xψ
riota2f.3 x=Bφψ
Assertion riota2f BA∃!xAφψιxA|φ=B

Proof

Step Hyp Ref Expression
1 riota2f.1 _xB
2 riota2f.2 xψ
3 riota2f.3 x=Bφψ
4 1 nfel1 xBA
5 1 a1i BA_xB
6 2 a1i BAxψ
7 id BABA
8 3 adantl BAx=Bφψ
9 4 5 6 7 8 riota2df BA∃!xAφψιxA|φ=B