Metamath Proof Explorer


Theorem riota2f

Description: This theorem shows a condition that allows us to represent a descriptor with a class expression B . (Contributed by NM, 23-Aug-2011) (Revised by Mario Carneiro, 15-Oct-2016)

Ref Expression
Hypotheses riota2f.1
|- F/_ x B
riota2f.2
|- F/ x ps
riota2f.3
|- ( x = B -> ( ph <-> ps ) )
Assertion riota2f
|- ( ( B e. A /\ E! x e. A ph ) -> ( ps <-> ( iota_ x e. A ph ) = B ) )

Proof

Step Hyp Ref Expression
1 riota2f.1
 |-  F/_ x B
2 riota2f.2
 |-  F/ x ps
3 riota2f.3
 |-  ( x = B -> ( ph <-> ps ) )
4 1 nfel1
 |-  F/ x B e. A
5 1 a1i
 |-  ( B e. A -> F/_ x B )
6 2 a1i
 |-  ( B e. A -> F/ x ps )
7 id
 |-  ( B e. A -> B e. A )
8 3 adantl
 |-  ( ( B e. A /\ x = B ) -> ( ph <-> ps ) )
9 4 5 6 7 8 riota2df
 |-  ( ( B e. A /\ E! x e. A ph ) -> ( ps <-> ( iota_ x e. A ph ) = B ) )