Metamath Proof Explorer


Theorem nffv

Description: Bound-variable hypothesis builder for function value. (Contributed by NM, 14-Nov-1995) (Revised by Mario Carneiro, 15-Oct-2016)

Ref Expression
Hypotheses nffv.1 _xF
nffv.2 _xA
Assertion nffv _xFA

Proof

Step Hyp Ref Expression
1 nffv.1 _xF
2 nffv.2 _xA
3 df-fv FA=ιy|AFy
4 nfcv _xy
5 2 1 4 nfbr xAFy
6 5 nfiotaw _xιy|AFy
7 3 6 nfcxfr _xFA