Metamath Proof Explorer


Theorem cdlemksv

Description: Part of proof of Lemma K of Crawley p. 118. Value of the sigma(p) function. (Contributed by NM, 26-Jun-2013)

Ref Expression
Hypotheses cdlemk.b B = Base K
cdlemk.l ˙ = K
cdlemk.j ˙ = join K
cdlemk.a A = Atoms K
cdlemk.h H = LHyp K
cdlemk.t T = LTrn K W
cdlemk.r R = trL K W
cdlemk.m ˙ = meet K
cdlemk.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
Assertion cdlemksv G T S G = ι i T | i P = P ˙ R G ˙ N P ˙ R G F -1

Proof

Step Hyp Ref Expression
1 cdlemk.b B = Base K
2 cdlemk.l ˙ = K
3 cdlemk.j ˙ = join K
4 cdlemk.a A = Atoms K
5 cdlemk.h H = LHyp K
6 cdlemk.t T = LTrn K W
7 cdlemk.r R = trL K W
8 cdlemk.m ˙ = meet K
9 cdlemk.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
10 fveq2 f = G R f = R G
11 10 oveq2d f = G P ˙ R f = P ˙ R G
12 coeq1 f = G f F -1 = G F -1
13 12 fveq2d f = G R f F -1 = R G F -1
14 13 oveq2d f = G N P ˙ R f F -1 = N P ˙ R G F -1
15 11 14 oveq12d f = G P ˙ R f ˙ N P ˙ R f F -1 = P ˙ R G ˙ N P ˙ R G F -1
16 15 eqeq2d f = G i P = P ˙ R f ˙ N P ˙ R f F -1 i P = P ˙ R G ˙ N P ˙ R G F -1
17 16 riotabidv f = G ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1 = ι i T | i P = P ˙ R G ˙ N P ˙ R G F -1
18 riotaex ι i T | i P = P ˙ R G ˙ N P ˙ R G F -1 V
19 17 9 18 fvmpt G T S G = ι i T | i P = P ˙ R G ˙ N P ˙ R G F -1