Metamath Proof Explorer


Theorem riotabidv

Description: Formula-building deduction for restricted iota. (Contributed by NM, 15-Sep-2011)

Ref Expression
Hypothesis riotabidv.1 φψχ
Assertion riotabidv φιxA|ψ=ιxA|χ

Proof

Step Hyp Ref Expression
1 riotabidv.1 φψχ
2 1 anbi2d φxAψxAχ
3 2 iotabidv φιx|xAψ=ιx|xAχ
4 df-riota ιxA|ψ=ιx|xAψ
5 df-riota ιxA|χ=ιx|xAχ
6 3 4 5 3eqtr4g φιxA|ψ=ιxA|χ