Metamath Proof Explorer


Theorem cdlemksv

Description: Part of proof of Lemma K of Crawley p. 118. Value of the sigma(p) function. (Contributed by NM, 26-Jun-2013)

Ref Expression
Hypotheses cdlemk.b 𝐵 = ( Base ‘ 𝐾 )
cdlemk.l = ( le ‘ 𝐾 )
cdlemk.j = ( join ‘ 𝐾 )
cdlemk.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemk.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemk.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemk.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
cdlemk.m = ( meet ‘ 𝐾 )
cdlemk.s 𝑆 = ( 𝑓𝑇 ↦ ( 𝑖𝑇 ( 𝑖𝑃 ) = ( ( 𝑃 ( 𝑅𝑓 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝑓 𝐹 ) ) ) ) ) )
Assertion cdlemksv ( 𝐺𝑇 → ( 𝑆𝐺 ) = ( 𝑖𝑇 ( 𝑖𝑃 ) = ( ( 𝑃 ( 𝑅𝐺 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝐺 𝐹 ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 cdlemk.b 𝐵 = ( Base ‘ 𝐾 )
2 cdlemk.l = ( le ‘ 𝐾 )
3 cdlemk.j = ( join ‘ 𝐾 )
4 cdlemk.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdlemk.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdlemk.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
7 cdlemk.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
8 cdlemk.m = ( meet ‘ 𝐾 )
9 cdlemk.s 𝑆 = ( 𝑓𝑇 ↦ ( 𝑖𝑇 ( 𝑖𝑃 ) = ( ( 𝑃 ( 𝑅𝑓 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝑓 𝐹 ) ) ) ) ) )
10 fveq2 ( 𝑓 = 𝐺 → ( 𝑅𝑓 ) = ( 𝑅𝐺 ) )
11 10 oveq2d ( 𝑓 = 𝐺 → ( 𝑃 ( 𝑅𝑓 ) ) = ( 𝑃 ( 𝑅𝐺 ) ) )
12 coeq1 ( 𝑓 = 𝐺 → ( 𝑓 𝐹 ) = ( 𝐺 𝐹 ) )
13 12 fveq2d ( 𝑓 = 𝐺 → ( 𝑅 ‘ ( 𝑓 𝐹 ) ) = ( 𝑅 ‘ ( 𝐺 𝐹 ) ) )
14 13 oveq2d ( 𝑓 = 𝐺 → ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝑓 𝐹 ) ) ) = ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝐺 𝐹 ) ) ) )
15 11 14 oveq12d ( 𝑓 = 𝐺 → ( ( 𝑃 ( 𝑅𝑓 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝑓 𝐹 ) ) ) ) = ( ( 𝑃 ( 𝑅𝐺 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝐺 𝐹 ) ) ) ) )
16 15 eqeq2d ( 𝑓 = 𝐺 → ( ( 𝑖𝑃 ) = ( ( 𝑃 ( 𝑅𝑓 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝑓 𝐹 ) ) ) ) ↔ ( 𝑖𝑃 ) = ( ( 𝑃 ( 𝑅𝐺 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝐺 𝐹 ) ) ) ) ) )
17 16 riotabidv ( 𝑓 = 𝐺 → ( 𝑖𝑇 ( 𝑖𝑃 ) = ( ( 𝑃 ( 𝑅𝑓 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝑓 𝐹 ) ) ) ) ) = ( 𝑖𝑇 ( 𝑖𝑃 ) = ( ( 𝑃 ( 𝑅𝐺 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝐺 𝐹 ) ) ) ) ) )
18 riotaex ( 𝑖𝑇 ( 𝑖𝑃 ) = ( ( 𝑃 ( 𝑅𝐺 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝐺 𝐹 ) ) ) ) ) ∈ V
19 17 9 18 fvmpt ( 𝐺𝑇 → ( 𝑆𝐺 ) = ( 𝑖𝑇 ( 𝑖𝑃 ) = ( ( 𝑃 ( 𝑅𝐺 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝐺 𝐹 ) ) ) ) ) )