Metamath Proof Explorer


Theorem cdlemksv

Description: Part of proof of Lemma K of Crawley p. 118. Value of the sigma(p) function. (Contributed by NM, 26-Jun-2013)

Ref Expression
Hypotheses cdlemk.b
|- B = ( Base ` K )
cdlemk.l
|- .<_ = ( le ` K )
cdlemk.j
|- .\/ = ( join ` K )
cdlemk.a
|- A = ( Atoms ` K )
cdlemk.h
|- H = ( LHyp ` K )
cdlemk.t
|- T = ( ( LTrn ` K ) ` W )
cdlemk.r
|- R = ( ( trL ` K ) ` W )
cdlemk.m
|- ./\ = ( meet ` K )
cdlemk.s
|- S = ( f e. T |-> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) )
Assertion cdlemksv
|- ( G e. T -> ( S ` G ) = ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 cdlemk.b
 |-  B = ( Base ` K )
2 cdlemk.l
 |-  .<_ = ( le ` K )
3 cdlemk.j
 |-  .\/ = ( join ` K )
4 cdlemk.a
 |-  A = ( Atoms ` K )
5 cdlemk.h
 |-  H = ( LHyp ` K )
6 cdlemk.t
 |-  T = ( ( LTrn ` K ) ` W )
7 cdlemk.r
 |-  R = ( ( trL ` K ) ` W )
8 cdlemk.m
 |-  ./\ = ( meet ` K )
9 cdlemk.s
 |-  S = ( f e. T |-> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) )
10 fveq2
 |-  ( f = G -> ( R ` f ) = ( R ` G ) )
11 10 oveq2d
 |-  ( f = G -> ( P .\/ ( R ` f ) ) = ( P .\/ ( R ` G ) ) )
12 coeq1
 |-  ( f = G -> ( f o. `' F ) = ( G o. `' F ) )
13 12 fveq2d
 |-  ( f = G -> ( R ` ( f o. `' F ) ) = ( R ` ( G o. `' F ) ) )
14 13 oveq2d
 |-  ( f = G -> ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) = ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) )
15 11 14 oveq12d
 |-  ( f = G -> ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) )
16 15 eqeq2d
 |-  ( f = G -> ( ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) <-> ( i ` P ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) ) )
17 16 riotabidv
 |-  ( f = G -> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) = ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) ) )
18 riotaex
 |-  ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) ) e. _V
19 17 9 18 fvmpt
 |-  ( G e. T -> ( S ` G ) = ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) ) )