Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk.b |
|- B = ( Base ` K ) |
2 |
|
cdlemk.l |
|- .<_ = ( le ` K ) |
3 |
|
cdlemk.j |
|- .\/ = ( join ` K ) |
4 |
|
cdlemk.a |
|- A = ( Atoms ` K ) |
5 |
|
cdlemk.h |
|- H = ( LHyp ` K ) |
6 |
|
cdlemk.t |
|- T = ( ( LTrn ` K ) ` W ) |
7 |
|
cdlemk.r |
|- R = ( ( trL ` K ) ` W ) |
8 |
|
cdlemk.m |
|- ./\ = ( meet ` K ) |
9 |
|
cdlemk.s |
|- S = ( f e. T |-> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) ) |
10 |
|
fveq2 |
|- ( f = G -> ( R ` f ) = ( R ` G ) ) |
11 |
10
|
oveq2d |
|- ( f = G -> ( P .\/ ( R ` f ) ) = ( P .\/ ( R ` G ) ) ) |
12 |
|
coeq1 |
|- ( f = G -> ( f o. `' F ) = ( G o. `' F ) ) |
13 |
12
|
fveq2d |
|- ( f = G -> ( R ` ( f o. `' F ) ) = ( R ` ( G o. `' F ) ) ) |
14 |
13
|
oveq2d |
|- ( f = G -> ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) = ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) |
15 |
11 14
|
oveq12d |
|- ( f = G -> ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) ) |
16 |
15
|
eqeq2d |
|- ( f = G -> ( ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) <-> ( i ` P ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) ) ) |
17 |
16
|
riotabidv |
|- ( f = G -> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) = ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) ) ) |
18 |
|
riotaex |
|- ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) ) e. _V |
19 |
17 9 18
|
fvmpt |
|- ( G e. T -> ( S ` G ) = ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) ) ) |