Metamath Proof Explorer


Definition df-trl

Description: Define trace of a lattice translation. (Contributed by NM, 20-May-2012)

Ref Expression
Assertion df-trl trL=kVwLHypkfLTrnkwιxBasek|pAtomsk¬pkwx=pjoinkfpmeetkw

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctrl classtrL
1 vk setvark
2 cvv classV
3 vw setvarw
4 clh classLHyp
5 1 cv setvark
6 5 4 cfv classLHypk
7 vf setvarf
8 cltrn classLTrn
9 5 8 cfv classLTrnk
10 3 cv setvarw
11 10 9 cfv classLTrnkw
12 vx setvarx
13 cbs classBase
14 5 13 cfv classBasek
15 vp setvarp
16 catm classAtoms
17 5 16 cfv classAtomsk
18 15 cv setvarp
19 cple classle
20 5 19 cfv classk
21 18 10 20 wbr wffpkw
22 21 wn wff¬pkw
23 12 cv setvarx
24 cjn classjoin
25 5 24 cfv classjoink
26 7 cv setvarf
27 18 26 cfv classfp
28 18 27 25 co classpjoinkfp
29 cmee classmeet
30 5 29 cfv classmeetk
31 28 10 30 co classpjoinkfpmeetkw
32 23 31 wceq wffx=pjoinkfpmeetkw
33 22 32 wi wff¬pkwx=pjoinkfpmeetkw
34 33 15 17 wral wffpAtomsk¬pkwx=pjoinkfpmeetkw
35 34 12 14 crio classιxBasek|pAtomsk¬pkwx=pjoinkfpmeetkw
36 7 11 35 cmpt classfLTrnkwιxBasek|pAtomsk¬pkwx=pjoinkfpmeetkw
37 3 6 36 cmpt classwLHypkfLTrnkwιxBasek|pAtomsk¬pkwx=pjoinkfpmeetkw
38 1 2 37 cmpt classkVwLHypkfLTrnkwιxBasek|pAtomsk¬pkwx=pjoinkfpmeetkw
39 0 38 wceq wfftrL=kVwLHypkfLTrnkwιxBasek|pAtomsk¬pkwx=pjoinkfpmeetkw